Search results for "dynamical model"
showing 6 items of 6 documents
A stochastic dynamical social model involving a human happiness index
2018
[EN] This paper presents a new human happiness index built through five dimensions: development, freedom, solidarity, justice and peace. These five dimensions are evaluated through quantitative variables obtained from the Human Development Reports, World Data Bank and Eurostat. The new happiness index has been built following the guidelines set by the Human Development Reports of the UN for the construction of quality indices, and it has been compared on a set of 13 EU countries with the Overall Life Satisfaction Index, which is used by the UN. Moreover, the new index has been included in a dynamic mathematical model through the demographic rates to study the evolution of the population. Th…
RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process
2021
The design and application of Soft Sensors (SSs) in the process industry is a growing research field, which needs to mediate problems of model accuracy with data availability and computational complexity. Black-box machine learning (ML) methods are often used as an efficient tool to implement SSs. Many efforts are, however, required to properly select input variables, model class, model order and the needed hyperparameters. The aim of this work was to investigate the possibility to transfer the knowledge acquired in the design of a SS for a given process to a similar one. This has been approached as a transfer learning problem from a source to a target domain. The implementation of a transf…
Insights into the compositional evolution of crustal magmatic systems from coupled petrological-geodynamical models
2020
Funding was provided by the VAMOS Research Center, University of Mainz (Germany) and by the ERC Consolidator Grant MAGMA (project #771143). The evolution of crustal magmatic systems is incompletely understood, as most studies are limited either by their temporal or spatial resolution. Exposed plutonic rocks represent the final stage of a long-term evolution punctuated by several magmatic events with different chemistry and generated under different mechanical conditions. Although the final state can be easily described, the nature of each magmatic pulse is more difficult to retrieve. This study presents a new method to investigate the compositional evolution of plutonic systems while consid…
Validation of models for sprays
2016
We consider complex fluids consisting of a dispersed phase (solid particles or liquid droplets) immersed in a gas. A class of models describing the dynamics of such a kind of systems is given by a system of partial differential equations where a kinetic equation, describing the dispersed phase, is coupled to a fluid equation for the background gas. The coupling is given by the drag force exerted by the gas on the dispersed phase. Within this class, we shall analyse the case where the kinetic equation is a Vlasov-type equation and the fluid equation are of Stokes or Navier-Stokes type. We shall discuss the validation problem for this class of models, i.e. the derivation of the equations of t…
Zemach moments and radii of H2,3 and He3,4
2019
We present benchmark calculations of Zemach moments and radii of $^{2,3}\mathrm{H}$ and $^{3,4}\mathrm{He}$ using various few-body methods. Zemach moments are required to interpret muonic atom data measured by the CREMA collaboration at the Paul Scherrer Institute. Conversely, radii extracted from spectroscopic measurements can be compared with ab initio computations, posing stringent constraints on the nuclear model. For a given few-body method, different numerical procedures can be applied to compute these quantities. A detailed analysis of the numerical uncertainties entering the total theoretical error is presented. Uncertainties from the few-body method and the calculational procedure …
Fission dynamics: The quest of a temperature dependent nuclear viscosity
2013
This paper presents a journey within some open questions about the current use of a temperature dependent nuclear viscosity in models of nuclear fission and proposes an alternative experimental approach by using systems of intermediate fissility. This study is particularly relevant because: i) systems of intermediate fissility offer a suitable frame-work since the intervals between the compound nucleus and scission point temperatures with increasing excitation energy are much smaller than in the case of heavier systems, ii) the dependence of viscosity on the temperature may change with the fissility of the composite system; iii) the opportunity to measure also observables in the evaporation…